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THEORY OF ACTIVE NONRECIPROCAL NETWORKS'

ABSTRACT

This investigation sets forth theory and experimental data for active nonreciprocal networks.
A simple way is shown of achieving nonreciprocity using a magnetic field device exhibiting
small amounts of differential phase shift. In the theoretical treatment, use is made of scat-
tering parameters. The effect on nonreciprocity of having cascaded and parallel connected
elements is considered. How matching and scattering from various junctions influences non-
reciprocity is included. Two simple devices exhibiting nonreciprocity are discussed in detail:
a differential amplifier, and a differential attenuator; and a procedure is given for their use
in active network synthesis. For thesedevices, the meander lineis the nonreciprocal element
utilizing a magnetic field. A new meander-line design is presented, realizing a desired im-

pedance, based on recent data on odd- and even-mode velocities along coupled microstrips.

From the experimental work, data are reported on a meander line showing impedance charac-
teristics which are in good agreement with theory and showing the amount of differential phase
shift possible. To realize an element with loss, an experimental bilateral microstrip atten-
uator is described whose resistances are short silver-deposited lines. Measurements show
satisfactory matching for a 6-dB model. A complete design is given for a microstrip differ-
ential attenuator using the loss and nonreciprocal elements mentioned operating near 3 GHz.
Scattering parameters measured on a model differential attenuator show very close agreement
with theory. Data are presented on both the differential attenuation and the insertion loss of

this realized model.

A theoretical analysisis givenin Appendix A of two lossless three~port circuits capable of ex-
hibiting nonreciprocity using small amounts of differential phase shift. The analysis demon-
strates that relations between variables exist that will allow perfect matchingat input and out-
put ports and will allow the desired nonreciprocity without dependingentirely on the existence

of circulation.

Accepted for the Air Force
Franklin C. Hudson
Chief, Lincoln Laboratory Office

T This report is based on a thesis of the same title submitted to the Faculty of the Worcester
Polytechnic Institute, Worcester, Massachusetts, on 5 December 1968 in partial fulfillment
of the requirements for the Degree of Doctor of Philosophy in Electrical Engineering.

iii




CONTENTS

Abstract

I. INTRODUCTION
A. Work of Previous Investigators
B. Statement of the Problem
C. Objectives

II. THEORY

Definitions

Circuit Configurations
Matching Constraint

Matched Differential Amplifier
Matched Differential Attenuator
Use of Non-ideal Active Device

Alternate Junctions

EQEHBUOEP

Use in Active Network Synthesis

III. REALIZATION OF THE MODEL
A. Phase-Shift Element
B. Bilateral Microstrip Attenuator
C. Differential Attenuator Model

IV. CONCLUSIONS

REFERENCES

APPENDIX A — Imperfect Circulators
APPENDIX B

APPENDIX C — Bibliography

iv

iii

W W = =

15
19
21
25
31
34

39
39
53
53

63
66
67
79
92




THEORY OF ACTIVE NONRECIPROCAL NETWORKS

I. INTRODUCTION

Much has been written concerning a class of electrical networks which may be characterized
as being bilateral, passive, linear, and composed of finite lumped elements. The theory has
been developed to such a degree that various mathematical disciplines have been established
whereby these networks may be synthesized directly from a given analytic function.

This report is concerned with a different and more general class of networks for which bi-
lateralness, or reciprocity, is no longer a requirement. At least for a part of the development,
the restriction of passivity is also to be removed. Further, since the intended application is at
microwave frequencies, elements possessing distributed rather than lumped parameters are uti-
lized. Thus, this less restrictive class of networks is identified as being nonreciprocal, active,
and linear (at least within a limited operating range).

In the following sections, the theory of active nonreciprocal two-port networks is extended
to include those whose transmission characteristics may be interchanged by a simple switching
scheme. The theory shows that nonreciprocal forward-to-backward gain may be achieved by
the proper interconnection of active elements and of passive elements that do not exhibit recip-
rocal phase delay. A basic active circuit is described using the minimum number of components
necessary for the existence of such nonreciprocal characteristics. A second device exhibiting
nonreciprocal forward-to-backward attenuation is also predicted by the theory. For the latter
device, a design is given together with an analysis of data from an experimental model. In Ap-
pendix A, two types of imperfect circulators are analyzed as three-port nonreciprocal lossless
devices. Appendix B consists of a listing of programs written in Fortran H language specifically
for the IBM-~360 computer installation at Lincoln Laboratory. Finally, a bibliography pertinent
to this report is included as Appendix C.

The remainder of this section is devoted to describing the nature and scope of this specific
investigation of active nonreciprocal network theory. As a first step, to obtain the proper per-
spective, a brief discussion is given of several pertinent contributions to the theory from other

investigators.

A. Work of Previous Investigators

Information is available in the literature dealing with the analysis and synthesis of nonre-
ciprocal circuits, various active devices which include conventional tunnel-diode amplifiers,

and distributed parameter microstrip transmission lines.




1. Nonreciprocity .

Nonreciprocity results from the interaction of a signal magnetic field with a magnetized
medium. Thus, a way exists of controlling nonreciprocal phase by reversing a steady magnetic
field. If the terminal characteristics of a network are dependent upon nonreciprocal phase, then
the terminal characteristics themselves may be switched by such a magnetic bias.

Su” and Carlin, et a_l.,z-5 have demonstrated the realization of desired nonreciprocity in
conventional active network synthesis. However, these realizations are totally predicated upon
the use of a gyrator capable of exhibiting a full 180° of nonreciprocal phase shift. Wenzel6 and
others have shown how microwave reciprocal and nonreciprocal filters may be designed using
techniques of modern network synthesis.

Several passive devices are available that do not display equal bilateral phase delay; more-
over, unlike the gyrator, these devices may have only a few degrees of nonreciprocal phase.
Little information is available on the application of these devices to network theory. One such

device, the meander line, is analyzed by Hair and Roome.7

2. Active Devices

Single-port nonlinear devices exhibiting negative resistance have been reported in the tech-
nical literature for many decades. Although they are considered unstable, they have been ap-
plied in many useful ways. Of these negative resistances available today, the Gunn8 device,
the Read9 avalanche diode, the L.S. A.10 (limited space-charge accumulation) mode device, and

Hen el have been shown to hold promise for the future. ’

the tunnel diode
Increasing interest has been created in the very active field of microwave transmission by

use of physically small active devices similar to the tunnel diode operating at higher and higher

frequencies. Certainly, tunnel diodes are not new, for these particular devices have been ap-

. Two

plied successfully ever since the discovery of the phenomenon of tunneling by Esaki.1
basic amplifiers are in use today: the transmission type, utilizing the concept of a two-port
negative resistance; and the reflection type, utilizing the concept of a one-port negative resist-
ance. In the latter, some additional device is required with which to separate the waves inci-
dent upon and reflected from the negative resistance. Sca.nla.n14 shows the use of three- and
four-port ideal circulators with which to perform the separation. On the other hand, Gallagher15
shows a matched pair of negative resistors in conjunction with a 90° 3-dB hybrid junction as a

means to this end.

3. Microstrip Transmission Lines

The interconnection of elements at microwave frequencies is most easily accomplished to-
day by the distributed parameter microstrip line consisting of a single narrow strip separated
from a ground plane by a slab of dielectric. The properties of these microstrip lines were first
set forth by Wheeler.16
together have been analyzed recently by Weiss and Brya.nt.17

The characteristics of propagation along two such microstrips coupled

Jones and Bolljahn18 worked out design equations for various filter configurations using
coupled lines in the strip-line transmission scheme where normal modes propagate along lines
with the same velocity. Similar physical configurations exist in the microstrip transmission

t Numbered references are listed at the end of this report on p.66.




scheme, but here, owing to a dielectric-air boundary, the normal modes propagate with differ-
ent velocities. Differences in propagation velocity certainly alter the predicted filter response
of a given configuration. These filter design equations have not been modified for the microstrip

system.

4. Periodic Sections

No information is available concerning networks of periodic structure where each iteration

is itself an active nonreciprocal section.

B. Statement of the Problem

This study deals specifically with a desired network of potentially periodic structure oper-
ating at microwave frequencies. Each individual section is to be a basic active network capable
of producing nonreciprocal gain by utilizing nonreciprocal phase-shift elements. Such a section
thus can provide some degree of unilateral gain in a direction determined by the elements which
exhibit a small amount of nonreciprocal phase shift. Since the nonreciprocal phase shift is re-
versed by inverting a magnetic field, the unilateral gain through the network will also be con-

sidered switchable.

C. Objectives

The objectives of this report are: (1) to contribute to the body of knowledge of active nonre-
ciprocal network theory sufficiently to allow the prediction of basic configurations that exhibit
some degree of unilateral and switchable gain with small amounts of nonreciprocal phase shift;
and (2) to reduce to practicality one of the devices predicted, thus to substantiate the theoretical

development.

II. THEORY

In this section, the theory of active nonreciprocal networks is developed sufficiently to pre-
dict several models which show interesting characteristics. The effect of mismatched active
elements and different junctions on these nonreciprocal characteristics is considered. A sim-
ple procedure is set forth whereby these devices might be utilized in the area of active network
synthesis. Throughout the analysis, liberal use is made of the scattering formalism.

A, Definitions
1. Scattering Parameters

One manner in which to characterize a two-port network is given by

1 _ 1 2
E  =S,E +8, E (1)
and
2 _ 1 2
E; =8, E  +S, E/ (2)

where E; is the complex wave amplitude incident on port 1, Ei2 is the complex amplitude inci-
dent on port 2, E; is the complex wave amplitude scattered from port 1, ESZ is the wave scat-
11’ SiZ‘ SZi‘ and S22 are the directional-coupling or scattering param-
eters. The ordered double subscript, i.e., S

tered from port 2, and S

12’ is intended to mean scattering referred to




port 1 from port 2. Examination of Egs. (1) and (2) shows that S“ and S22 have the significance
of input reflection coefficients, while S21 and S12 are the forward and backward transmission
coefficients, respectively.

Equations (1) and (2) may be combined in a single matrix equation as

1 1
Eg S11 S| B
= (3)
2 2
12 S0 S| By
or
El El
S 1
= [s] : (4)
E?2 EZS
S 1

2. Unitarity

Certain useful relations between the scattering parameters may be derived by considering
the energy relations at the driving-point terminals of a given multi-port network.

The total real power delivered to any network may be written in matrix form as

P=Re(I*]t><E]) (5)

where I*]t is the conjugate transpose or so-called Hermitian conjugate of the matrix I]. If the
network is lossless, P must vanish. On substituting the scattering parameters for I*]t and as-
suming that the driving-point impedance is identical at each terminal of the multi-port network,

the condition for zero power loss becomes

[S*], (8] = [U] (6)

or

[S][S*], = [U] (7)

where [U] is a unit diagonal matrix. Thus, the scattering matrix itself representing a lossless
network is unitary.

In order to satisfy the equality indicated in either Eq. (6) or (7), S*]t must be the inverse
of the scattering matrix, i.e., [S]_i. The determinant of such a matrix must have a unit
magnitude.

A condition such as unitarity is often a valuable asset in the algebraic simplification of ma-

trix manipulations, and will be used in the development that follows.

3. Reciprocity

Of the several possible identities which come from the expansion of Egs. (6) and (7), the

following two will suffice to illustrate reciprocity:
2
15,12 + I

2
12' =1 (8)

1}
-

15,417+ Is,,1? (9)




Clearly, then, for a lossless network '812' = IS21 |, which serves to illustrate the fact that the
only nonreciprocity possible is in the arguments of these transmission coefficients.

The visible effect of reciprocity or nonreciprocity on a scattering matrix is the symmetri-
cal condition of the matrix about the principal diagonal. If the matrix is symmetrical, the net-
work is bilateral; however, if there is dissymmetry about the main diagonal, the network pos-

sesses some degree of nonreciprocity.

4. Differential Phase

A particular network which is lossless, hence satisfying the unitarity condition, and nonre-
ciprocal only to the extent that the argument of S12 does not equal the argument of SZi’ is said
to exhibit differential phase shift. If the phase delay in the forward transmission direction is
e_j <p_’ the phase delay in the reverse transmission direction is e-j ?+, and the two-port network

is matched at both ports, then the scattering matrix for this device is

-je,
[S] = . (10)

It is noted the matrix of Eq. (10) demonstrates nonreciprocity by the dissymmetry of phase
about the main diagonal; however, owing to the fact that the network is lossless, lSiZI = |S21 e
The two directional phase angles v, and ¢_ will appear many times in the analysis to follow.

In order to assist in simplifying as much as possible, a differential phase factor is defined as

-ille ;-9 )/2]

. (11)

B. Circuit Configurations

Of the many possible methods of interconnecting individual elements to achieve nonrecipro-

cal or differential gain, perhaps the simplest to consider is the cascade or tandem connection.

1. Cascade Connection

Figure 1 shows a cascading of three obstacles or scatterers, a bilateral amplifier with which

to make the total circuit active, and a matched element exhibiting differential phase.

AMPLIFIER @,
1 Ob1 ——  — — 33— Ob3 e e Ob2 )
(bilateral) @
[} [} _](P (] ]
r'1 s'1 0 G T 83 0 € r, 8
tie
8, T, G 0 83 Iy 0 8, I,

Fig. 1. General cascade connection.




Theorem I

Any number of circuit elements consisting of lossless scattering obstacles, bilateral ampli-
fiers, and elements exhibiting differential phase when cascaded together produce at most nonrec-
iprocity in the arguments of the overall transmission characteristics. The magnitudes of the
transmission parameters are always equal. If a cascaded circuit is to show nonreciprocal am-
plitudes, it then follows that such nonreciprocity must be present in one or more of the elements

cascaded together.

Proof.

The input-output waves at the various numbered junctions of the general cascade connection

of Fig. 1 are related by directional-coupling parameters and are given in matrix form by

1] [ 1
Es ry sy Ei
= (12)
2 2
Es s1 r1 Ei
E2 0 G E.2
S 1
- (13)
E> G of E3
8 1
d L
- -
3 , ] 3
ES r3 s3 Ei
_ (14)
4 4
ES S3 Ty Ei
- -
4] i ' 4
E 0 €77¢]| E;
s i
. (15)
E’ e o E>
S 1
and
- _
Al 1 1 5
E‘s r, s2 Ekl
= . (16)
6 6
Es s, I, Ei
- L

A change in notation has been adopted for this proof to avoid confusion where there are several
similar double subscript scattering terms — for example, five different S“ terms. In addition,
the notation for the differential phase is altered slightly to simplify the handling of this proof.

It is advantageous to rewrite each matrix equation in a transmission form relating the inci-
dent and scattered waves at one terminal to the incident and scattered waves at the opposite ter-
minal. This may be accomplished by expanding each matrix equation indicated and recollecting

terms to yield




- _
o ! Ay
i Sy Sy i
. r'r r' el
gl ( b4 1) S )
sj i 1 s1 s1 s
EZ2 o 1/c| 3
1 1
(18)
22 G o | B3
S S
T B
E3 _r_3 1] g4
i s3 s3 i
. r'r r! o
B3 (S, _’3 3) SR
s 3 s3 s3 s
oh 0o €9 E?
1 1
_ ' (20)
o 3?9 o ES
SJ B S
and
ES _z 1| gh
i EP s, i
= . 2
r'r r' e
El5 (s, 2 2) 2| gt
s 2 s2 s2 s

At an interface between successive elements indicated in Fig. 1, waves must be continuous
across the boundary. Thus, a wave scattered to the left becomes the wave incident from the
left, etc. This means that Ei2 from Eq. (17), for example, is identically equal to E: in Eq. (18).
Satisfying the boundary condition requires merely the inversion of the rows of a given transmis-

sion matrix equation. Substituting each successive inverted equation into Eq. (17) forms

r r.r r!
) I T | PR [P T
Sy 1 3 3
r'r r' r
Eg (ss-=2) = | |0 ve —— &
s 1 1 3 3
[ ' '
eI? 0 s! T2z r_z E®
2 s s ‘i
2 2
X . (22)
. r
o -5 | E
2 2




Equation (22) may be simplified by applying the condition of unitarity to each of the three

lossless scattering obstacles as

! —r'r, : e-mi (23)
5150 7Ty
sis, —rlr_ = e_jﬁz (24)
272 2°2
and
s's, —rlr_ = e_jB3 (25)
373 3°3

since the determinant of each matrix involved must have a magnitude of one. Equation (22) now

becomes
-iB _
E.1 —-r 1 G 0 € & r ¢ 0
i 1 1 3
- s,8.,8

E1 e e-‘]Bi e 0 1/G -r 1 0 ¢
s 1 3

"1k, 6

€ r A

i
X . . (26)
—rZ 1 ES

Performing the indicated matrix multiplication and then rewriting the resulting transmission-

form equation in scattering form gives

[ -iBBy) i . 1 ]
Ej (e P ere Yot oryrir ey & sy Y i
s -3Fy 1 ~183 1 i
(—rir'ze - rir':,’) G+ (—r'2r3 + 1) G (—rir'ze - rir':,’) G+ (—r'2r3 + 1) o
- (27)
. -j(B,+B.) -iB
™ o e )
E6 siszs3e ry€ Ty G+ ra€ + r, 1 G E6
s -jﬁ3 1 ‘jﬁ3 1 i
(—rir'ze —rir':,’) G+ (—r'2r3 + 1) el (—rir‘ze —rir'z’) G + (—r'2r3 +1) =

Of particular interest is the ratio of the overall SZ1 and S12 terms, which becomes

+j2¢
Syy  545,8;¢€ o
- 1 1 t -
S12 5152%3
Owing to the fact that each of the three obstacles was lossless such that lsil = ls'1 |, ISZI = ls'2 l,
and |s3| = ls'3|, it is evident that
IS, 1 =18,,1 (29)

The only amount of nonreciprocity ever possible exists in differing arguments of the 812 and SZi'




Regardless of what selection is made from among lossless scatterers, bilateral amplifiers,
or differential phase shifters, the analysis of a cascaded group of these elements always yields
an equation similar to Eq. (28). Thus, the magnitude of the overall transmission parameters is
always the same as shown by Eq. (29).

It should be noted that the bilateral amplification G can only scale the magnitudes of S12
and S2
has worked out the case where the bilateral amplifier is not matched but rather is mismatched by

L since this term appears in the denominator common to the two coefficients. The author

differing amounts at the two ports. The extra r-terms to properly account for the mismatch ap-

pear in the numerator of S1 1 and S and also appear as an extra complexity of the denominator

common to all scattering coefficierftzs. Thus, reflections in cascade caused by mismatching can~
not aid in obtaining nonreciprocity from differential phase but only to the scaling of S1 2 and SZi'

If the numerator and denominator terms of Eq. (28) could be obtained in some sort of additive
form rather than in the product form, then there would be a possibility that the ratio of SZi/Siz
was not always of unit magnitude.

2. Parallel-Parallel Connection

From the previous results, it would seem, in addition to scattering waves, that provision
should be made for an additional conductive path through the network. The simple parallel-
parallel connection provides for this.

Theorem II.

If a wave is split by a scattering junction, and if one resulting component wave is amplified
while the other component is altered by a differential phase element, and if the waves are brought
together again in such a way that multiple feedback paths exist, then nonreciprocal gain is pos-

sible. The parallel arrangement indicated is necessary for nonreciprocity and is also sufficient.

Proof.

The following analysis will suffice to demonstrate the fulfillment of the necessity.

The circuit arrangement of Fig. 2 shows two junctions for splitting and recombining the sig-
nal, a single differential phase~shift element, and a bilateral amplifier or active device, as re~
quired by Theorem II.

{———— AMPLIFIER o2
J i)
5 6
?,
3 4
e
-1/3 2/3  2/3 -ie,
0 G 0 €
= - 2 S, = S =
J 2/3 1/3  2/3 - . - "
2/3  2/3 —1/3 e 0

Fig.2. Parallel-parallel circuit arrangement.




There is no loss in apparent generality if the simplest junction is used first in the analysis
which favors reduced algebraic manipulation. One of the simplest junctions is formed by the
converging of three identical lossless transmission lines. The two junctions shown are then con-
sidered to be completely symmetrical and lossless. Owing to the use of lossless lines, the scat-
tering coefficients are represented by real numbers, hence simplifying algebraic manipulation.

The terminal relations of such a symmetrical junction are

gl E!
8 1
3 3
EC| = W) B (30)
E® E>
8. Lt
and
B2 (Ez
8 1
4 4
ESl = Ul [E (31)
b 6
s L !

where [J) represents the scattering matrix of the symmetrical junctionT given by

I 4o I43 —1/3  2/3 2/3
Joy Jup Jps| = 2/3 —1/3 2/3 . (32)
Jag I3 I3 2/3 2/3 —1/3

1 1
Es S11 S12 | By
= (33)
2 2
Eq Sa1 Saz | B
and the lower circuit branch is similarly designated by
3 g g 3
Es Sy S1z| By
= . (34)
4 0 0 4
Eg S210 S22 | By

+C. G. Montgomery, R.H. Dicke, and E. M. Purcell, Principles of Microwave Circuits (Mc Graw=Hill, New
York, 1948), p.427.

10




With reference to the rlght -hand junction, it is evident that E, 2 referred to in Eq. (31) is the
same as E in Eq. (33), and E in Eq. (31) is the same wave as E4 in Eq. (34) Similarly, Es2
in Eq. (31) is identical to Ei2 of Eq. (33), and E of Eq. (31) is the same as E of Eq. (34). Upon
making the indicated changes in Eq. (31) and collectmg similar terms, a set of three equations

relating incident and reflected waves at the junction may be written as

2 3 6

4
— 1
Ei UJ ( 21E +s2 )+J ( 21}:, +522Ei)+J13E1 (35)
4 2 . 3 6
ES =75, (s 21}3 +s,, Ei)+J22(521Ei 22E )+J 23E; (36)
6 1 2 . 6
E = J31(521Ei + SZZEi ) + J32(521E + s E ) + J33E . (37)

Referring now to the left-hand junction, it is easily recogmzed that E in Eq (30) is E in
Eq (33), E. in Eq. (30) is E3 in Eq. (34), E3 in Eq. (30) is E of Eq. (34), ‘and E of Eq. (30) is
of Eq. (33) Making these substitutions 1nto Eq. (30) and collectmg terms generates three

equatlons describing the left-hand junction as

3 5

1 1 2 , 4

Ej =J0yy(8 4B + 8B ) + T o08) By +si,E) + 05K (38)
3 1 2 3 5

E1 7J21(s“Ei +512Ei)+‘]2 (s E +s E )+J }:, (39)
5 1 2 G ! 5

Eg =J3 (s By +8,E) + J35(s) Bl + s),E7) + J35E (40)

Equations (37) and (40) show that the overall scattering parameters may be specified if Eii,

E.Z, E.3, and Ei4 can be obtained as functions of Ei5 and Eié. Equations (35), (36), (38), and

i i
(39) form a set from which the indicated four variables may be obtained by solution of simulta-

neous equations. It will be assumed at the outset that Sgq4 =855 = s'“ = s'22 = 0. There is, of
course, a significant saving in algebra by such an assumption. As an example of the calculation
involved,
1 2 .6
T3 Pz AR =ik g
2 2 .6
3 S24 0 T
1 _2p5 2.
—1  -38, 3B 38,
2 2 .5 1
s 0 B LR e 2
Ei = . (41)
1 2 0
—38y 3 524
7 L
51524 0 5021 L
1 !
R T 0 3 Sq42
2 1
0 31 oI 3 512

11




The solution is

2 4 . _2 2o 2 4 6
50 . (5524512 ¥ 551254 = 3) By 155155155 * 551579 51)) 79
i T3, oo st 1 S A
27 512512521521 ¥ 9 512521 7§ 812520 T 9 512500 1§ 5425 — 1
Assembling all the Ei terms in Eqgs. (40) and (37) yields a matrix equation of the proper
form as
E® EJ
s i
. = [3] y (43)
Es E;

where [S] refers to the overall circuit parameters. Of particular interest are the S12 and SZi

terms which become, from Egs. (40) and (37),

S12 =J31s12[E part of E. ]+J32 12[E part ofE ]
_4 ' k3 - 4 _ 4
=9 542512521 1 9 542512521 T 9 %427 9 512 (44)

and

S,, =J,,8 [E5 artofE1]+J [E art of E; ]

21 T v31%29% P i 32524 p
~ |4 ' 4 ' 4 ., _4
=9 512521521 7 9512524521 7952179 S : (43)

The ratio of Eq. (44) to Eq. (45) is

S (s' —1) + 8! (s - 1)
2 542'9428 21 12 12521 . (46)

21 521181585 — 1) + 85,858, — 1)

The character of Eq. (46), in displaying sums and differences of phasor scattering terms, shows
no guarantee that the numerator and denominator are always equal in magnitude. The possibility
that S12 # Sz1 proves the necessity of the parallel-parallel arrangement.

The following proves the sufficiency of the parallel arrangement and determines conditions
that must exist for nonreciprocal gain to be possible.

It may be assumed that the upper branch of the circuit of Fig. 2 is an amplifier characterized

by

0 Geja

[S] (47)

Geja 0

where G is the amplification constant, and eI is the amplifier phase delay. Further, it is
assumed that the differential phase element occupies the lower branch of the same Fig. 2 and

is given by

12




0 e de
[S']

s (48)
€l eJ 0

! q . tje . . q
where ¢ represents some common insertion phase, and ¢ 39 is the differential phase. By

o ' r 1

substituting the proper terms and making use of the identity eJ(Za )| = 2jel? sina!, Eq. (46)
becomes

Sy2 _ GeJOZZj sin o' +€j<p(G2€j201_1) (49)

521 Gel%jsina' + €39 (G2 I%Y _ )
The form of Eq. (49) is

£ + ej‘pn

£ +e1%y
and the ratio

jo, . . g
£ _Ge” 2jsine ) (50)

K Gzera—i

If £ and 7 are related by a real number, then the magnitude of Eq. (49) is unity, and no differ-
ential gain is ever possible. If, on the other hand, £/7 can be complex, this proves the suffi-
ciency of the parallel circuit in creating differential gain.

Substitution for the exponentials in Eq. (50) gives

% - 2jG (cosa + jsina) sina’ (51)

G? (cos @ + j sin oz)2 -1

By inverting, dividing, collecting of terms and simplifying, the ratio becomes

£ _ 1
] ‘(g sin « +Lsina)_.(g cos a __1_0050,) . (52)
Zsina @ 2G sina’ J'Z2 sine’ T 2G sina’

It may be determined from this equation that (1) if G is not 1.0, or that (2) « is not n(r/2) where
n is odd, ¢/m cannot be totally real and thus the magnitude of Eq. (49) is guaranteed something
other than unity. These conditions on Eq. (52) are sufficient to allow differential gain. It is to
be noted from Eq. (52) that the nonreal condition can be met with @ = 0. Thus, in this analysis,

the amplifier does not need to have additional phase delay.
Corollary.

The minimum number of components required to achieve the desired nonreciprocal gain is
four.
The specification is for two junctions with which to split the conducting waves, one amplifier

or active device to provide gain, and one differential phase element for control.
Scattering Matrix.

The complete scattering matrix for the overall circuit parameters of Eq. (43) is shown in
Fig. 3. First it is noted the matrix does not possess symmetry about the principal diagonal,
which indicates the presence of nonreciprocity. Second, if all terms containing ¢, are inter-
changed for ¢_ and vice-versa, the matrix terms would switch about the main diagonal, indi-

cating a swap (end for end) of the network transmission characteristics.
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C. Matching Constraint

The fact that the present application is for a periodic structure of identical interconnected
networks raises the question concerning each input reflection parameter S“. If this term and
S22 are made to vanish, this would greatly simplify the present analysis. Further, Theorem I
demonstrated that there will be no sacrifice of nonreciprocal gain by constraining the impedance

to a match.
In order for S“ to vanish, the numerator must be zero, i.e.,

5 “ile e )

3G e + G2—4G(e

-je_ 'j‘P+ 'j(‘P++¢’_)
+ € )+ € +3=0 . (53)

It should be noted here that the gain of the amplifier required for this matched constraint is a
function of the junction parameters and the two phase shifts, @, and ¢_.
In order to simplify Eq. (53) as much as possible, a term representing the average insertion

phase of any component is defined as

'j[(¢’++¢’_)/2]
€ =€ . (54)

With the use of this definition and the definition of differential phase factor given in Eq. (11),

we may rewrite Eq. (53) as

(3G% + 1) €% — 4G(eb* + €6) + (G2 + 3) = 0 (55)

where 6 * represents the conjugate of 6. Regrouping these terms yields a quadratic equation in

the complex amplifier gain required as

G%(3¢% + 1) + G(—Be Re 6) + (2 +3) =0 . (56)

Solving this quadratic,

G =

4¢ Re & 16> Re 6 % +3
2 * 2, .2 2 ' (57)

3¢” + 14 (3¢™ + 1) 3¢“ + 1

This is a particular type quadratic wherein the two roots are reciprocal conjugates of one an-

other. This may be demonstrated by considering the terms from the quadratic Eq. (56) that

identify the product of the two roots as

2
e +3 _ 1 € +3 (58)

where ez is complex but of unit magnitude, and (e* )2 is its conjugate. It should be noted that

the magnitude of this product is unity. The argument of the r,r, product is

2 )
arg(r,r,) = tan~ Irn_ei —tan} M)—Z —2tan-11lme (59)
3+ Ree 3 + Re (e*) Re €

but the second term is conjugate to the first; so,

arg(r,r,) = Z(tan-1 -ﬂf—f —tan~? -Iﬁné—i-) . (60)
3+ Re e

Hence. the two roots are reciprocal in magnitude but of conjugate angles.
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A program was written for the Lincoln Laboratory IBM-360 computer in order to solve for
values of G as a function of the average insertion phase € and the differential phase factor 6.
The program is shown in Appendix B, Fig. B-1. Inasmuch as the objective is to produce nonre-
ciprocal gain, the program selects the larger of the two roots of the above quadratic.

Figure 4 shows the results of the computer solution for the magnitude of the vector ampli-
fier gain G for small values of differential phase factor and for various values of the insertion
phase. Of particular significance is the fact that magnitudes on this gain profile, required to
satisfy the matching constraint, are relatively small. No nonreciprocal gain is possible if
G = 1; therefore, the valid solutions all lie within the horseshoe-shaped boundary indicated by
the dashed line.

The limited ranges of the variables € and 6 may be identified with various conditions ap-
plied to the basic quadratic Eq.(57). Valid solutions for G > 1 as identified in Fig. 4 exist only
when the radical term of Eq. (57) is real. When the radical term is either zero or imaginary,

G =1, which does not satisfy condition 1 of Eq. (52); thus, nonreciprocity is not possible.

Particular arguments of G are required to satisfy the matching constraint. Figure 5 shows
the profile of G angles required for given variables ¢ and 6. Here again, the horseshoe curve
has been repeated to bound those values that satisfy the requirement for G > 1.

It should be noted that the coordinates of this horseshoe boundary curve may be defined
quite easily. To this end, Eq.(57) may be rewritten restricting its application to the solution

boundary where the magnitude of G is 1.0 as

2 2 2
IilLe=4€Reéij16€ Re" 6 e +3 (61)

3€2 +1 (3e2 + 1)2 352 +1

where 6 is the angle on G. Factoring an € out of this equation and assembling the radical

terms gives

2 2
“ILe:e4Re6:t~/16Re26—(6Ree + 10)
3¢ + 1

(62)

The bracketed quantity is required to be of magnitude 1.0. Assume that the radical term is

imaginary, i.e., 16 Re2 6 < (6 Re ez + 10). The bracket now has a magnitude of 1. This means
2 _ 16 Re’ 6
Re ¢~ = e 1.667 (63)

is the relation defining the coordinates of the boundary of the dashed curves utilized in Figs. 4
and 5.

The diagram of Fig. 6 illustrates how the various areas of the gain profile of Fig. 4 and the
angle profile of Fig. 5 are related to the conditions on the radical term of Eq. (62).

Other general areas of the insertion phase — differential phase space might be expected to
yield additional solutions still within the matching constraint. An examination of Eq. (56) shows
this to be true in that any addition or subtraction of 4180° to the variable § yields the identical
condition, since only the real part of 6 is involved. Further, the addition of multiples of 180°
to the variable ¢ provides the same magnitudes of G, but, as Eq.(62) shows, the argument of
G will depend on these 180° multipliers. The possible cyclic repetitions of the solution areas

are shown in Fig. 7.
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RADICAL IS IMAGINARY

Fig. 6. Diagram identifying areas of gain prafiles
of Figs. 4 and 5 with certain canstraints on Eq. (59).
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Fig. 7. Diagram illustrating cyclic repetitians of valid salutian
areas of gain profile as a functian of ¢ and 6.

D. Matched Differential Amplifier

Having determined that a range of G does exist for which a matched input and output is pos-
sible for potential iterations of the minimum-element basic circuit configuration, it remains to

show what range of nonreciprocal gain is possible.
1. Range of 812

A modified computer program was written to determine values of G, siZ’ and S21 over
smaller increments of the variables of insertion phase and differential phase factor in order to
show more smoothly what variations exist in the parameters.

Figure 8 shows the results of the computer solution for S1 2 Here, the magnitude of S12
is displayed as a function of the average insertion phase €, and the differential phase factor 4.
Superimposed on this resultant array is a contour map of equal 812 magnitudes. A pole of the
function is in evidence near the value of € = 55° and 6 = 35°, where the reverse transmission

parameter S12 reaches a high value.
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Attention is still drawn to the fact that the absolute gain of the actual circuit amplifier is
still only 3.7 at most. The fact that SiZ has such a high value in the vicinity of the pole is caused

by the denominator of the expression tending to zero.
2. Range of SZi

Figure 9 shows the computer results for S, with variables of smaller increments. Again,

21
superimposed on the array is a contour map of equal SZi magnitudes. Unlike the array of the
previous transmission parameter, there is no pole of the function in evidence; moreover, the

values of S, magnitude are, in general, more nearly the values of the circuit amplifier gain.

21
This function seems to be quite regular over the range of interest.

3. Ratio of 521/512

Of special significance is the ratio of the forward-to-reverse transmission scattering param-
eters. This determines the magnitude of the nonreciprocal gain possible.
Figure 10 shows such a ratio over the range of the original computer program variables.

Spectacular, of course, is the point represented by the presence of the singularity of S i. e.,

€ = 55°and 6 = 35°, where the nonreciprocal gain ratio 821/512 is 1:0.01. It is necess1a?;'y to
keep in mind, however, that all values of Sn_ and SZ1 are >1 within any range where the differ-
ential amplifier is matched. This represents gain in both directions. The ratio of gains, i.e.,
S,,/8,, is the nonreciprocity desired.

Attention is called to the fact that Fig. 10 shows no nonreciprocal gain to be possible when
the insertion phase is either 90° or 180°, a result predicted by the sufficiency condition proved

on p.13.

E. Matched Differential Attenuator

Referring again to the constraint of a matched input and, because of the symmetry in the
scattering matrix of Fig. 3, a matched output, we will recall that the necessary amplifier gain
required was one complex root from a special quadratic, Eq.(57). The theoretical development
of the matched differential amplifier was based solely on the selection of the larger of the two
reciprocal conjugate roots.

Owing to the character of the quadratic equation, the alternate root for any given € and 6
must have a magnitude <1. Thus, the required match is produced by an "amplifier" having a
bilateral "gain" G < 1, or bilateral loss. The computer program was modified to select the

smaller root; this modification is shown in Appendix B, Fig. B-2.
1. Range of SZ1

The range of values of the forward transmission parameter is shown in Fig. 11 as a function
of the variable insertion phase € and differential phase factor 6. Because the values of G are
reciprocal to those used previously, the magnitude of a given value of SZ1 is the reciprocal of
that obtained with the same ¢ and é as before. This means that all SZi values are <1 within

the range where a match can be effected.
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2. Range of S12

In similar fashion, Fig. 12 shows the range of values of the reverse transmission parameter
as a function of the same variables. Again, each value given is the exact reciprocal of a value
obtained with the first computer solution for the same variables. All 812 values are therefore
<1. A point of interest is that of € = 55° and 6 = 35°, which shows the function tending to zero,
the reciprocal of the previously located value obtained in the vicinity of the pole.

3. Ratio of 821/812

The ratio of reciprocals is the reciprocal of the original variables. The ratio of 821/812’
utilizing the complex values of G (which are <1 ), is everywhere the reciprocal of the values
shown previously in Fig. 10.

Of special interest is the fact that significant nonreciprocity exists with this analysis, which
predicts the existence of a matched differential attenuator. If the insertion loss in one direction
can be kept low while the loss in the opposite direction is high, this differential attenuator might
be a practical isolator. Particularly appropriate to the isolation concept is the theoretical dif-

ferential loss ratio of 100:1, shown in Fig. 10 at € = 55° and 6 = 35°.

F. Use of Non-ideal Active Device

It will now be of interest to return to the active circuit discussed on p.11. The theoretical
development to this point was predicated on the use of a special two-port active device capable
of bilateral amplification while being matched both at input and output. Such a device perfectly
matched is considered ideal. Several active devices are potentially applicable here, but they
are considered non-ideal due to the fact that perfect matching cannot be achieved. Thus, it is
of practical interest to know whether amplifier matching is really required.

The effect on the required gain and nonreciprocity of the overall differential device caused
by relaxing the matched requirement (thus to produce additional internal reflections) is now to
be determined. First, the mismatch to the non-ideal active device will be characterized as
being entirely real in order to simplify the algebraic manipulation. Following this development,

the influence that a refiection phase angle has on mismatching will be considered briefly.
1. General Scattering Matrix
Let the scattering matrix of the active element in Fig. 2 be represented by
G

R
SEN= (64)
G

where R is the input and output reflection coefficient, assumed to be real. The symmetrical
junction given by Eq. (32) and the matched differential phase-shift element are retained for this
analysis. Equations (35) through (40) are still appropriate. Of the original assumptions made,

3 H 1 - 1 -
the only one that remains is Syq =85, 0.
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Making the necessary substitutions into the indicated equations gives, for a typical term,

1 1 2 6
—3 8 (st -3 E L
2 2 2 _6
52 2y ) =3 B =
1 _1 _2 L5 2
(38t 3 512 3 B 38y,
2 2 _2 55 _1 .,
, 3 544 3 542 3 Bj 3 S12
Ei = (65)
1 1 ;X
—38y —{3sy,tl) Fsh, v
2 2 _1 . _
3 S24 3 822 3 S24 B
1 1 2 .
—(38yy v -3, 0 eACH )
|
| s 2 -1 S
| 351 3 S12 3 542
where Syp =8,y = R. The solution of this typical term is given as
2 4 _2 _2 _2 _21 &5
(581281 % 3825217 5544522755223 514~ 31 B
i 1 _6_ ] i 1] _E 1 ..2_ 1 _i 6
53 +157 842502521727 911512522 % 2751252279 514512 7 981,79 84,1 By )
i 71 T DL e 35 —3s. . — '
g (81851 ¥ 48] 58,1848 5851 +8)5851 =548, 38,, 3549
' ol ' ] ' '
—8 4,828,485 7858548, 548585485, t 45,551

The form of matrix Eq. (43) still applies; therefore, assembling all ‘ui terms, Eq.(44) may

be rewritten as

wri=r E5-0, St To4(844 (B, part of ]
1 1
+s 2[E part of E. ])+J32 12[E part ofE ]
= 227 {'6511512522 = 685,481, * 08,8158,y 165,585,855,
— 68),8,, —6s),} (67)
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and Eq. (45) may be rewritten as

5 2
S = J [E part ofE ]+s [E. part of E.7])
21 with Ei5=1' Ei6=0 31 i i
3
I3, 21[E part of E]
E.. ] ' 1 _ 1 — 1
27 {6512521521 +68, 58,851 —68,,5515,,6555,,
. 1 1
68,485 — —6s),} . (68)
The ratio of Eq. (67) to Eq. (68) is
1 —
54 _ 12‘5'12 21 =) 48 o8y y8y, =8y =8, 1+ 858,) e
Say 8pql8ipshy — 1)+ 85,0858, =848, —8,, 8,y — 1)

After making the proper substitutions indicated by

R Geja
[S} - (70)
Geja R
and
00 g
0 eJaeJ‘p
[S'} = (71)
R
el I 0

Eq. (69) becomes

512 Gel%2j sina' + ?[G2I%* — (R? + 2R + 1)) (72)

521 Ge%2j sina' + €I Y[G2I2% _ (RZ + 2R + 1)]

The form of this equation is still § + ej(pn /& + e-'j (pn, which will always have a magnitude of
unity whenever the ratio §/77 is real. The ratio
3 GeJ 2j sin o'

= . (73)
M T G212 _(RZ 4 2R + 1)

Substituting for the exponents and collecting terms yields

1
= (74)
[Gsma (R% + 2R + 1) sina] _J[Gcosa (R% + 2R + 1) cosa]

=3 v

2 gin a' i 2G sin a' 2 sin a' 2G sin @

It is necessary that o have values other than n{n/2), where n is odd, to keep the ratio from
being entirely real. This is part of the same sufficiency condition found before on p.13; however,
now, in addition, the restriction imposed on G must be broadened to include the effect of R. It

is evident that Eq. (74) is also real whenever

2
_ R+ 2R +1
G=——F— . (75)

Thus, |G| cannot be |R + 1| for differential gain to be possible.
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The complete scattering matrix for the basic differential circuit with amplifier reflections
is shown in Fig. 13. If R is chosen as 0, the matrix terms degenerate to those terms displayed
in Fig. 3.

2. Vector Space Representation

With finite reflections R, the gain G is now a function of three variables and must be repre-
sented in three-dimensional vector space. The amplifier gain G required to provide a matched
differential circuit now depends on its own reflection coefficient R, as well as ¢ and 6. G may
be solved for from the Sy term of the matrix in Fig. 13. Making the substitutions for Py and

¢_, this becomes

4c Re 6 + N16€% Re? (6) — (3€2 + 1) [(=3R% + 2R + 1) €2 + (—R% — 2R + 3)]

3£2+1

G = (76)

This result should be compared with Eq. (57), which is for the case of R = 0.

The computer program was extended to solve for the complex amplifier gain G required
for various values of € and 6 with chosen increments of real reflection coefficients R. The
program additions indicated may be found listed in Appendix B, Fig. B-3. Figure 14 shows a
three-dimensional representation of all the possible solutions of this problem in reflection-
insertion phase-differential phase space.

For successively larger positive values of R, the second complex term under the radical
of Eq. (76) has a diminishing magnitude; thus, larger values of 6 are allowable for a matched
solution regardless of the value of €. On the other hand, for successively larger negative values
of R, the second term under the radical becomes smaller in magnitude for large values of € and
larger in magnitude with very small values of €. A larger magnitude of this second term de-
creases the allowable 6, thus limiting the range over which solutions are possible. For suc-
cessively larger negative values of R with € near 90°, there exists a continuous range of pos-
sible values of 6 without limit. If a large range of 6 is desired, R should be negative, which
means the amplifier should have an impedance lower than that of the feeding line. These de-
pendences on 6 are reflected in the dissymmetry of the spatial configuration.

Certainly, any value of R other than zero in Eq. (76) will cause the roots of the quadratic
Eq. (76) to be different than reciprocal conjugates. Hence, the differential attenuator model will
not have characteristics that are reciprocal to those of the differential gain model for any non-

zero value of R.

3. Dependence on Reflection Angle

In practice, a fourth dimension is certain to be present as the phase angle on R. The effect
that this angle has on the three-dimensional solution space is to be determined. A single plane
was passed through the reflection phase space diagram of Fig. 14 at the point where R = +0.2 and
parallel to the insertion- and differential-phase coordinate axes.

The phase angle on R = 0.2 was varied from —120° to +120° in order to determine just how
susceptible the required values of G were to changes in reflection angle. Again, the computer
program was rewritten. The substitutions required will be found in Appendix B, Fig. B-4.

Figure 15 shows a resulting three-dimensional configuration representing the solution space
of R = 0.2 as influenced by reflection coefficient phase. The figure shows the reflection coeffi-
cent phase to vary only from —90° to +90°, and illustrates the fact that varying the phase
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Fig. 14. Three-dimensional representation showing all  Fig. 15. lllustration showing all solutions of |G| >1

possible problem solutions of |G| >1 in reflection- as a function of amplifier reflection coefficient phase

insertion phase-differential phase space. angle, insertion phase ¢, ond differential phase foctor
8; omplifier reflection coefficient |R| = 0.2,

angle on the amplifier reflection coefficient does not limit the range of € or 6 for possible solu-
tions. However, it does produce a change in symmetry about the plane € = 90° with higher re-
flection angles. With these higher angles, the range of values of 0 is extended to include a
greater number of possible solutions.

By relieving conditions on the ideal amplifier, several active devices become practical.
Among these is the simple reflection-type tunnel-diode amplifier consisting basically of a scat~
tering junction and the terminating negative resistance. There is also a need for some stabilizing

network! which will add sufficient loss to compensate for the negative resistance at unwanted

frequencies.

G. Alternate Junctions

To determine the effect that the scattering junction itself might have on nonreciprocity, two
general solutions were worked out using junctions different from the symmetrical lossless junc-
tions in the basic matched differential amplifier arrangement. One junction, formed by a 50-ohm
line feeding two identical 100-ohm lines, is to be identified in the following as a balanced junction.
The other junction formed by the converging of a 50-, 25-, and 100-ohm line is arbitrarily chosen
and is to be identified in the following analysis as a completely nonsymmetrical junction. These
junctions are shown schematically in Fig. 16(a-b). Since the theoretical development parallels the
cases already treated, it will not be presented in as much detail. Suffice it to say that changing
the junctions changes the numerical coefficients appearing in the various scattering matrices.
The general properties of forward-to-backward differential gain and differential loss remain as
before. The first configuration to be analyzed is that of the basic differential amplifier using two

balanced junctions.

1 J. H. Lepoff, "Design Procedure for o Shunt Stobilizing Circuit for Tunnel Diode Amplifiers;® privote
communicotion.
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Fig. 16. Diagrammatic representation of lossless scattering junctions: (a) a balanced
junction, (b) a nonsymmetrical junction.

1. Balanced Junctions

The balanced junction chosen is represented by the matrix

o A 1]
NZ NZ
N B SR R |
(1 = \/E_Z 2
41 1
NZ 22

The resulting overall scattering matrix, utilizing two of these balanced junctions, is shown
in Fig. 17. The matrix does display symmetry about the secondary diagonal, and it folds over
along the principal diagonal if e, and ¢_ are interchanged.

The computer program was written to solve for possible amplifier gain, which would allow
for the matched differential amplifier. Program substitutions are listed in Appendix B, Fig. B-5.
The result of such an analysis gives a three-dimensional figure in reflection-phase space, as
shown in Fig. 18. It is interesting to point out that no solution is ever possible when R = 0, due
to.the fact that an incoming wave splits once at the first junction, matches the input to both the
upper path and the lower path, combines, and emerges as a single wave again. Thus, the sep-

arated waves just converge on the second balanced junction; there is no feedback possible.

2. Nonsymmetrical Junctions

The second alternate solution chosen was that utilizing the junction of Fig. 16(b). The scat-
tering matrix for this completely nonsymmetrical junction of 50-, 25-, and 100-ohm lines is
given as

0.1428 0.5714 0.8081

(J] = |0.5714 —0.7142 o0.4040| . (78)

0.8081 0.4040 —0.4285
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Fig. 18. Reflection-phase space representation
showing possible problem solutions of |G| > 1
when using balonced scattering junctions.

Figure 49 shows the complete differential scattering matrix resulting from this special choice.
A computer program, altered for the use of these special junctions and still requiring a

match, i.e., S,, = 0, may be found in Appendix B, Fig.B-6. The computer solution gave values

of G> 14 withini':l three-dimensional field of reflection-phase space that displayed interesting
characteristics. For an amplifier reflection coefficient of zero, no solution is possible; that

is to say, nonreciprocity is not possible with a matched input. For successively larger negative
values of R, a single lobe in solution space centered on ¢ = 90° is evident, very much like that
of Fig. 14. On the other hand, with successively larger positive values of R, a double lobe is in

evidence, one lobe being centered on € = 0 and the other on € = 180°.

H. Use in Active Network Synthesis

The theory developed thus far has been sufficient to predict two matched differential units —
one an amplifier, and the other an attenuator. Each unit is8 capable of exhibiting considerable
nonreciprocity with small amounts of differential phase. The use of two scattering junctions,
one active element, and one element exhibiting differential phase defines the amplifier; while
two scattering junctions, one passive element, and one differential phase element define the
attenuator.

In the field of active network synthesis, where the requirement of reciprocity has been re-
moved from analytic functions, there has been no way to realize the nonreciprocity except by
using one or more gyrators. Starting with a given nonpositive-real immittance function, the
nonreciprocity could be removed by a gyrator network to leave a positive-real remainder func-
tion which could be realized by several classical techniques. Use of the devices under discussion
here could offer an alternate way of achieving the desired nonreciprocity, but with small amounts

of differential phase.

4. Composite Cascade

Perhaps a more general scheme would be to achieve gain in one direction and loss in the
other by cascading together pne each of the previously described nonreciprocal units, thus pro-

ducing a composite cascaded unit.
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From the vast solutions of the matched differential amplifier and matched differential atten-
uator, it is possible to pick variables such that the cascading of one each of these presents an

overall scattering matrix, given as

(s]

(79)

where 1 < Gcs N, and 0 < Lc < 4. The value N used here is merely an upper bound. The param-
eters Siz and S?_1 may be interchanged readily by interchanging @, and ¢_.

2. Iterations of Composite Cascades

If additional gain or loss is required, the entire composite network may be repeated. Fig-

ure 20 shows the iteration of two such composite cascaded networks. The terminal relations

are
T i 7 T
el o ¢ | el
] C 1
= (80)
2 2
£ | Lo 0| B
and
2] i 1 2]
E o G, | E
- . (81)
E3 L o| B3
s | | C | 1 _

0 G
L. o

Fig. 20, lteration of two composite cascaded differential networks.

To be conformable, these equations are rewritten in transmission or chain form as




and
.2 [0 [l
Ei 0 Lc Ei
= . (83)
E & G 0 E ¢
s C s
By substituting Eq. (83) into Eq. (82), the overall transmission matrix equation becomes
1 1 3 3
E.1 0 Lc Gc 0 Ei , 0 1 E.1
= = = 5 (84)
L
e} G. 0 o | g3 ¢ lg2L? o| E3
s c Lc s c ¢ s
Converting this back to a scattering matrix equation,
E} o G?| el
s @ i
= 5 (85)
E3 L2 o | E3
s @ i

It is obvious that continued iterations of n of these structures can realize a scattering ma-

trix, given by

[S] (86)

Thus, the amount of nonreciprocity is dependent both on the number of iterations and on the dif-
ferential gain and loss chosen in realizing the basic composite cascade.
It must be realized that the absolute value of Gcn and of Lcn indicated depends on the cascaded

units being perfectly matched.

3. Immittance Relations

The desired nonreciprocity is specified by the terms of the scattering matrix of Eq. (86).
Much of the network synthesis is accomplished utilizing immittance relations preferable to such
scattering terms. Equation (86) will be converted to the immittance form to show that the scat-
tering terms necessary for synthesis can easily be recognized even though the function is given
in the immittance form.

The impedance matrix? of a two-port network may be obtained from a scattering matrix by

Z = 2(u] —1sh~1 = [u (87)
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where [U] is the unit diagonal matrix. Thus,

n
1 0 o G, 1
Z=2 - _
0 1 L™ o 0
C
1+ LD 2G"
_ 1 cc
n. n
1-Gc™L
CcC C n n, n
2L 1+GJL]

Similarly, the admittance matrix may be obtained from

Y = 20Ul + Sp~ Y =u1

-1
1 0 » @& 1
C
Y =2 + -
0 1 LY o 0
C
n~.n n
) s 1+LJGT —2G
1_L:G<§1 n n, n
2L 1+GoL
C C C

An immittance matrix may be formed by combining Eqs. (88) and (89) as

[ n.n )
1+LCGC £2G
n-n n.n
1—LCGC 1—LCGC
n.n
+ 2L, 1+I"ch
n.n n.n
1—LCGC 1—LCGC

(88)

(89)

(90)

where the + sign signifies an impedance matrix and the — sign signifies an admittance matrix.

Given an immittance matrix to realize, the selection would be made of Gc and Lc or G:

and L:, where n is the number of iterations of the basic composite cascade. Gc is the product

of like terms: for example, S12

matched differential attenuator section. In similar fashion,

L'c - SZi amplifier . SZi attenuator
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In this application to synthesis, nothing has been mentioned about the phase of either Lc or
Gc' Any amount of phase shift common to the two terms would be realized by a positive-real
residue function. An amount of differential phase could be realized by a unit similar to that em-

ployed in the basic differential gain circuit.

I0. REALIZATION OF THE MODEL

In order to demonstrate practicality and to substantiate the theoretical development, it was
decided to realize one of the models predicted. It was further decided to realize the matched dif-
ferential attenuator model first, thus to avoid at the outset the imbedding of an unstable active
tunnel diode and its necessary stabilizing and terminating circuits. For such a realization,
aside from symmetrical scattering junctions, it is necessary to have a controlling phase-shift
element and a bilateral attenuator.

Several experimental procedures were carried out by the author, both in order to proceed
at various points in the development and in order to verify some of the theoretical data. These

experiments are described below.

A. Phase-Shift Element

The key to either device model is the use of a two-port element which can produce a differ-
ent phase delay in the forward and reverse conductive directions. Only a few degrees of such
differential phase are needed. Further, the desire is present of interchanging the transmission
characteristics of the ports by being able to interchange ?, and ¢_, the phase delay in the two
conductive directions.

An additional requirement of having the input and output reflection coefficients equal to zero
restricts the impedance of the differential phase unit to 50 ohms, which is the present standard
transmission impedance in microstrip.

Of the several devices reported in the literature which exhibit differential phase, the mean-
der line was chosen for this application. Only a limited number of meanders would be necessary
to yield a small amount of phase shift at S-band (2.0 to 4.0 GHz).

Owing to the requirement of this special application, a need exists to know how to design
such a line for (a) the required 50-ohm impedance, and (b) the desired limited differential phase.
Unfortunately, there presently exists no procedure for calculating the desired differential phase;
thus, the following will be limited to the design of a meander line with a limited number of mean-

ders so far as its impedance alone is concerned.

1. Design of Meander Line

An iterative-type procedure has been developed by Syracuse University Research Corpora~
tion7 for the proper dimensions of linewidth and line spacing for a given substrate thickness to
yield a matched meander line. This procedure is based on an infinite number of meanders and
depends for accuracy on the reading of several sets of curves giving various fringing capacitances.

Here, a newapproach will be used to determine the meander-line impedance characteristics.
This will beaccomplished by modifying all-pass filter equations to properly account for changing
propagation velocities, and by using recent data on such velocities in coupled microstrips. Where

only a few meanders will be needed, such a scheme will be more direct.

Theory of Coupled Strips:— The problem of conducting strips in close proximity

has been solved for a general transmission scheme. Jones and Bolljahn18 present several
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golutions of two such parallel coupled lines with various terminations. However, their develop-
ment is for the stripline, transmission-line system, with a ground plane above as well as below
the coupled strips (such a configuration is illustrated in Fig. 21). Certainly, propagation along
the strips is in the TEM mode.

T

Fig. 21. Notation used in deriving all-pass filter characteristics in
stripline transmission system. After E. M. T. Jones and J. T, Bolljahn.18

The indicated sets of current generators can excite a so-called even or odd mode of propa-

gation. Each normal mode has a characteristic impedance defined by Bolljahn as follows:

Z_ . = characteristic impedance of one wire to ground with equal current
(flowing) in the same directions,
Zoo = characteristic impedance of one wire to ground with equal current

(flowing) in opposite directions.

Results are presented in Ref. 18 for two coupled strips connected together at the far end,
thus presenting a single meander line. This is classified as an all-pass filter.

The image impedance of such a derived filter in the TEM mode is given as

21 = J20e%00 (92)
and its insertion phase shift ¢ can be obtained from

oe

— tan2 B1
Cos ¢ = . (93)
+ tan2 Bl

The solution that follows is a modification for microstrip transmission.

Theory of Coupled Strips in Microstrip:— Figure 22 shows two parallel lines cou-

pled in the microstrip transmission system where now the upper ground plane is removed, leav-
ing air dielectric above the strip and a solid high dielectric substrate below. Wave propagation
along the strip is no longer truly in the TEM mode.

Owing to the fact that all transverse dimensions are much smaller than the wavelength within

the operating frequency range, the simplifyingassumption is made that the TEM mode still persists.
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Fig. 22. Notation used in deriving image impedance characteristic
for microstrip meander line.

A recent analysis by Weiss and Bryant”presents data for the even- and odd-mode velocities
along pairs of coupled microstrips. Datal for dielectric constants of 16.0 and 14.4 are repro-
duced in Appendix B, Figs. B-7(b) and B-8(b). These data are directly applicable to the deriva-

tion of the meander-line impedance.

Modification of All-Pass Equations:— The equations derived for the all-pass filter

or meander line in stripline may now be rederived taking into account the different mode veloci-
ties for microstrip transmission.
Referring to Fig. 22, the input current to each of the terminals may be related to the current

sources indicated as

I1 =i, + i,

I2 =i, -1,

I3 =i —1,

I, =ig+i, . (94)
The generator currents are, in turn, related to the terminal currents by

i =4

=z U +1)

=L

=% 4 =1

.1

i, == (1,1, (95)

4 2 4 3 .

Since infinite impedance current generators are employed, the strip voltage to the ground

plane V,q may be obtained from transmission-line theory as

t These data are reproduced with special permission from J. A, Weiss and T. G. Bryanf.w
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—Z5ely
al ’ sin g !

cos ﬁe(l - x)

v (96)
where Zoe is the even-mode characteristic impedance, and Be is the even-mode phase velocity
along the strip. Similar expressions exist for the contributions to v, and Yp by the remaining
current sources.

The terminal voltages for the coupled strips become

Vy = (Vag + Ve * Va3 + Vad)l 4o

1
Vo = Oy + Vi * Vi3 * Vgl oo
Vi = Wy * Vo + V3 * Vpad | 4oy
V4 - (Vai i Va2 * Va3 * Va4)| x=4 (97

Substituting Eq. (96) and similar expressions into Eq. (97) yields a set of equations, one of which
is illustrated here as

cos Bel cos Bol 1 1
Wy, = 925l sinp_t BRI sinp 1 — 24614 s p_I — 124414 sma_l (98)
In order to effect a simplification of the derivation, it will be helpful to define
. cosfB L
2 Toe smpel
. cosf £
- = B O
B = % Zoo sing 1t
= 3 1
€ -3 sing !
p=4dz L1 - . (99)

The relation between the terminal currents and terminal voltages may be expressed in ma-

trix form as

Vi Ii
VZ IZ
= [Z] . (100)
V3 I,
V4 14 ]
For the case of a single meander line, the boundary conditions require that I3 = —14 and
V, = V3.
This matrix equation reduces to two equations of the form
2 2
- D D~
Vi-[—A—B+ B]Ii+[-A+B- B]IZ (101)
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and

2 2
. D D
\’2—[—A+B——-§']I1 +[—A—B+ —B—] IZ . (102)

These terms may be compared with those of a general network described by the open-circuit

driving point and transfer impedances Zygs Zyp and Z,o where

Vi =zqly 2ol (103)

and

v

I1 +2z,,1 . (104)

27 %2 2272

If a boundary condition is now applied to this circuit such that it is terminated at port 2 by its

image impedance, V2 = —IZZI, Eq. (104) may be solved for I2 as
z
21

L =—"1 (105)

2 —ZI ~Z5; 1
With this result substituted, Eq. (103) becomes

Z,52
12721
V,=2z,,1, + ———1 o (106)
1 1171 —ZI — 255 1

With the circuit so terminated in its image impedance ZI' the ratio of Vi/li is also ZI' Thus,

(107)

If Zyy is identical to Z,0 and symmetry has been preserved to guarantee this condition, then

Zp = J244%22 ~ Z12%21 (&5)
The terms of Eqgs. (101) and (102) may be identified with Zygr Zpps Zyps and Zyy and substituted
into Eq. (108) to give

VA

2\1/2
ﬁl)_) (109)

= (4AB ==y

I

Upon substituting from the defining equation of Eq. (100) and simplifying, the final image imped-~

ance is given as

tang !
Zy = \ZoeZoo [tanp g - L)

This result may be compared with the Johns and Bolljahn result of Eq.(92).
The image transfer constant for any two-port network is defined in impedance terms as

(111)

Substituting for Zygs Zqp and Zyo and making use of the fact that Zyq = Zp
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_A—B +(D%/B)

cosh ¢ =
—A + B — (D*/B)

(112)

If the Zoe and Zoo are assumed to be real, i.e., lossless lines, Eq.{(112) may be reduced to

cos (zoe/zoo) —tang_{ tang !
(zoe/zoo) +tanp ! tanp !

(113)

Equations (110) and (113) show the alterations necessary in the Jones and Bolljahn all-pass

equations to properly take into account the different normal-mode velocities.

Theoretical Impedance Curves:— An examination of the Weiss and Bryant data17

reveals that Bo < B for coupled strips. Equation (110) then will no longer predict an image im-
pedance which is constant at all frequencies, for when Bol <n/2< Bel , the image impedance
is imaginary or the filter is in cutoff. Coupling in microstrip makes the meander line then a
band-pass filter.

Figure 23 shows both the image impedance ZI and the insertion phase ¢ calculated for a
magnesium titanate (K = 16) dielectric at frequencies in L-, S-, and C-bands. The length {
was chosen so that §_f would be 7/2 at 4 GHz, the end of S-band. The W/H ratio, i.e., width of
the conducting strip to the thickness of the substrate, was chosen to provide a 50-ohm image
impedance at 3.0 GHz. The dashed curves were intended to show the character of ZI and of ¢
if the effect of the even- and odd-mode velocities was not taken into account.
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Fig. 23. Theoretical image impedance and insertion phase
of microstrip meander line on dielectric (K = 16) substrate.

Assumption of Coupled Meanders:— Although accurate information is available
concerning the effect of coupling one strip to a second strip, no information is available on the
effect of a second or third coupling offered when more than one meander is included.

In order
to proceed, it is assumed that there is no additional effect on the image impedance presented
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by a second coupling meander. Although this is certainly erroneous, only a few meanders are

necessary in this case, and such an assumption serves as a starting point.

Experimental Meander-Line Impedance:—~ Before attempting to determine accurate

image impedance measurements on either a single or coupled meander line, the reflections in-
troduced by various connectors must be known. In this case, reflections were minimized by
using special OSM'r connectors with the projecting center pin flattened and its extension beyond
the plane of the shell limited to 15 mils. A special plexiglass hold-down gives rigidity to the
center pin. These OSM connectors, as redesigned by D. H. Temme, may be seen in place in the
photograph of Fig. 36. With the best 50-ohm line available, the measured reflection coefficient
of line plus connectors was 0.05 or less over the 2.0- to 4.0-GHz S-band.

A single meander line was cut from indium to the dimensions indicated in Fig. 23, the width
W = 12 mils, separation S = 8 mils, and length of 257 mils for a 40-mil-thick dielectric. Sheet
indium 2 mils thick was used for temporary circuits because it has low resistivity, can be readily
cut, is very pliable, and will stay in place with good electrical contact without the use of adhe-
sives. The meander line was then just pressed in place over an 8-mil gap cut in a gold-deposited
22-mil line on a substrate of magnesium titanate (K = 16). The result of the input scattering
measurement showed a reflection coefficient of 0.08 or less below a frequency of 3.0 GHz and
showed a tendency to cutoff by having a reflection value of 0.5 at 4.0 GHz.

Two indium meander lines were made and tightly coupled with a spacing of 8 mils. Although
the second line was supposed to be identical to the first, the line was actually slightly shorter
and was not exactly uniform in separation. The input scattering parameter S“ for this two-
meander line was 0.16 over the entire S-band range. The point for an indication of cutoff
(S“ = 0.5) occurred at a slightly higher frequency of 5.0 GHz. The coefficient becomes 0.93 at
6 GHz, indicating definite cutoff.

2. Influence of Ferrite

The previous results were sufficiently encouraging to proceed with the design of meander
lines on 40-mil-thick ferrite substrates. Ferrite material maintains good dielectric properties
while at the same time exhibiting the desired ferrimagnetism necessary for the generation of
differential phase shift. The ferrite chosen for these experiments was a gadolinium and aluminum-

doped yttrium-iron garnet (YIG) having a magnetic saturation moment 411'MS of 550G.

Demagnetized Permeability:— In such a ferrite medium of infinite and unbounded

extent, the application of a weak high-frequency magnetic field along with a static magnetic
field produces a permeability that has the properties of a tensor. The tensor nature of the per-
meability relating the harmonic induction of the ferrite to the microwave field intensity was

first given by Polder.19 One diagonal term from the Polder tensor is

47y>MH

w —y H
where ¥ is the gyromagnetic ratio for electron spin, e/mc = 17.6 X 10® rad/sec/Oe, or y/27 =
2.8 MHz/sec/Oe, M is the magnetic moment, and H is the static magnetic field intensity. It
is evident not only that p can be frequency-dependent, but also that its magnitude can be <1 in

an infinite medium.

t Trade name of Omni Spectra, Inc.

45




The most elementary ferrite geometry is that of the ellipsoid whose dimensions are small
with respect to wavelength. If a small sample of such an ellipsoidal-shaped ferrite is immersed
in a static uniform magnetic field Hex' the main field induces "magnetic charges' on the ellip-
soidal surface. The presence of these surface charges creates a field intensity component within
the ferrite in opposition to that of the main field, thus to alter the internal field intensity. Inter-

nally, Hi is uniform and is given by

H.=H - NM (115)
where —ﬁ/[ is the demagnetizing field caused by the presence of the surface charges, F is the
demagnetization tensor, and M is the magnetic moment of the ferrite. Even with the application
of an external field Hex’ which is directed only along the z-direction, it is possible that the uni-
form internal field Hi has x and y as well as z components. If the diriaf.tion of the external
magnetic field is aligned with one of the principal axes of the ellipsoid, N becomes a diagonal
tensor whose elements are demagnetization factors Nx' Ny' Nz.

In a lossless ferrite medium, with the alignment of ellipsoid coordinates such that one co-
ordinate is coincident with the direction of the applied static field, the magnetic moment M pre-
cesses about the static magnetic field vector. The natural frequency of such a precession is

given in terms of the demagnetization factors by Kittel20 as
© =y {H_ +(N.~N)M][H_+(N —N)m]/2 (116)
o ex X z ex y z

where v is the gyromagnetic ratio for electron spin.

Normally, such a sample of ferrite would be subjected to a weak high-frequency magnetic
field together with the steady field component. The presence of high-frequency field components
in directions other than along the static field direction generates magnetic moments in these di-
rections. The precessing magnetic moment influenced by the high-frequency field may be de-

scribed by a tensor permeability T:.. One of the diagonal terms of this tensor is given by

=14+ 4 M 1+—“’2 (117)
et AT I TN N M @
ex X z [o)

where W is given by the Kittel resonance of Eq. (116). By making this substitution, the single

permeability term considered becomes

41rM'y2~[Hex + (N, —N,)M]

=1+ 5 - (118)

v® {{H, + (N_~ N ) M] [H__+ (N, —N,) M]} -
Aside from the fact that the expression indicates a resonance in the second term, it is evident
that, even in the demagnetized state with Hex = 0, the permeability is frequency-dependent due
to the presence of the demagnetizing fields.

For a geometry different than the fundamental ellipsoid, e.g., the substrate with its mag-
netizing yoke, the view may be taken that the ferrite is composed of many macroscopic crystal-
lites, each with a saturation magnetization 41rMS, but each arbitrarily directed. Now, even with
a zero applied field Hex’ many demagnetizing field components are present and the permeability
cannot easily be described without resorting to artificial schemes to make a solution tractable.

Owing to the fact that the resultant permeability obtained for the infinite medium and for the
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elementary geometry demonstrated a dependence on frequency, it is recognized that p for any
geometry would have this property. It is also evident that p can be <1 even in the demagnetized
state.

The effect of frequency on the demagnetized p for the particular G500 ferrite material used
in these experiments is illustrated in Fig. 24. These data’ were obtained from measurements

on straight-line and circular resonators.
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Fig.24. Curve of effective permeability vs normolized saturatian magnetizotion
far a micrastrip line on demognetized ferrite substrate.

Expected SWR:— Because of this low-frequency effect in the demagnetized ferrite,
standing-wave ratio measurements made over S-band with this material would be expected to

vary from 1 to 1.4. This is assuming, of course, that everything else is perfectly matched.

Theoretical Impedance Curves:— Utilizing such a frequency-dependent p,T as shown

in Fig. 24, and the data on even- and odd-mode velocities from the Weiss and Bryanti'7 analysis,
calculations may now be made with Egs. (140) and (113) for the image impedance and insertion
phase of a meander line deposited on a ferrite substrate.

Figure 25 shows the theoretical results computed for frequencies in L.-, S-, and C-bands
sufficient to show the bandpass characteristic of the meander line. Evident in the figure is a
severe drop in image impedance caused by the changing permeability of the ferrite. The width-
to-height ratio W/H is selected to provide an impedance of approximately 50 ohms near the
3.0 GHz point. The dashed curves are intended to illustrate the effect of not taking the changing
velocity into account. In this case, as in the previous calculations, the length £ is chosen so
that g ¢ is /2 at 4.0 GHz.

Permeability in Latched State:— In practice, the ferrite will not be demagnetized,

but rather will be latched in one of its two remanent states with a zero applied magnetic field.
This extra complexity arises both by the mechanism of creating the necessary differential phase
and by the requirement that the test model have two switchable states. The effect of such a

t The data are reproduced with permission from E. J. Denlinger of the Lincoln Laboratory staff.
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latching state on the permeability is unknown, so it was decided on further calculations to utilize
the arithmetic mean between the projected completely demagnetized permeability and unity.

Field Interaction for Differential Phase:— Figure 26 shows the spatial configuration

of two magnetic field vectors }_la and Eb under a single meander line. Point A represents a loca-
tion where Ha and Eb are in space quadrature. The quadrature directions are identified by unit
vectors i_a and i,. The effective propagating magnetic field at point A is given in complex expo-

b
nential form by

_ _ _.ﬂx
Hy =(Th, +Th)e ] . (119)

If now hb can be related to ha in time quadrature such that hb = —jha, then

- - -jﬂx
Hy = ( ih —jih)e (120)

and the resulting instantaneous magnetic field is

h =ReH €jwt

A = iaha cos (wt — Bx) + ibha sin(wt — gx) . (121)

The indicated space and time quadratures provide for circular polarization of the magnetic field.

It should be observed that the needed time quadrature may easily be obtained by making the
meander path length £ a quarter-wavelength. In the ferrite-filled space under a meander line,
the actual polarization will vary from linear at the ends through elliptical to circular at the mid-
plane.

If a steady internal magnetic field Hi is present in a direction indicated along the meander
line, the magnetic moments in the ferrite will precess in a circular orbit about the vector Hi,
that is to say, in coincidence with or opposite the signal circular polarization just established.
Such coincidence produces strong coupling for signals propagating, say, from left to right, but
very weak coupling for propagation in the opposite sense. This is an aid to phase delay for prop-
agation in one direction, and an opposition to phase delay for propagation in reverse. This kind
of coupling produces the desired differential phase. Such an interaction has not yet been analyzed;
thus, there is no known direct way with which to calculate the differential phase factor 6 — it must

be determined experimentally.

Two Meander Lines on G500 Ferrite:~ Since interest was in utilizing a small

amount of differential phase shift, it was decided to determine experimentally just how much
differential phase would be possible using only two coupled meander lines deposited on ferrite.

In order to have a 50-ohm single microstrip line feeding the meander line at 3GHz, the
width of the strip must be selected with due regard for the permeability of the ferrite while in
the latched state. By using the approximation of 1/2(1 + p‘demag)’ the permeability becomes
1/2(1 + 0.84) = 0.92. The impedance will be degraded by Nji; so, the dimension W should be
selected from the Weiss-Bryant data for ferrite (K = 14.4) to produce a 52.1-ohm line. For
this condition, W/H is 0.5975, or, on a 40-mil substrate, the line width should be 23.9 mils.

For the meander line itself, the spacing was selected as 8 mils to provide close coupling
with a ratio S/H = 0.2. Selecting a W/H of 0.3 resulted in a calculated image impedance of
51.4ohms at 3GHz. The length of the meander legs (250 mils) was selected to give Bel = x/2
at the band limit of 4 GHz. With the order of the approximations involved, it was felt that
51.4 ohms was close enough for a first attempt. ‘
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Fig. 27. Polar display of complex reflection coefficients and transmission coefficients for two-meander,
chrome-gold line on G500 ferrite. Graphs are swept from 2 to 4 GHz.
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Measurements:~ Experience with indium lines on ferrite indicated the optimum
width to be 22 rather than 23.9mils for straight lines. A part of this discrepancy may be attrib-
uted to the fact that the thickness of the conducting strip was not considered. Caulton, et a_l.,21
developed an approximate relation for such a thickness correction. With a deposited strip thick-
ness of 0.3 mil, the width correction amounts to slightly less than 0.7 mil.

Because of inaccuracies in the involved printing process and in the etching process, the de-
posited meander line had dimensions quite different from the expected 12~-mil lines with 8-mil
spacings. The meander leg widths varied from 10.50 to 9.63 mils, the average being only
10.13 mils. On the other hand, spacing was increased to an average 9.36 mils with a variation
about this average value of +0.44mil. The width of the straight feed line was reduced to
20.67mils. All deposited conducting strips had a thickness of 0.354 mil.

The set of measured scattering parameters for this experimental meander line is shown
in Fig. 27, where frequency intervals of 0.1 GHz are marked with dots along the graphs; these
data show the largest reflection coefficient of S“ to be 0.087 and that of S22 to be 0.071. In
both of these views, the scale has been expanded to a reflection of 0.1 full scale. It is doubtful
that further adjustment of line width or meander-line width would show a startling improvement
with the order of reflections from the connectors involved. The line did show cutoff at 5.25 GHz.
Also shown in Fig. 27 is the transmission coefficient S21 for the two latched directions of mag-
netization, thus to illustrate and be able to measure the differential phase. Although the S12
measurements are not shown, they were within experimeéntal error of 1° from the measurements
of SZi’ but, of course, with the latching reversed.

A very careful measurement of the differential phase possible at the various frequencies of
S-band was made on this same experimental meander line. The data are shown in Fig. 28. By
taking measurements on a straight 22-mil-wide line, deposited on the same substrate, the inser-
tion phase of the meander alone was obtained. Figure 29 shows the result of these measurements
from lines on the G500 substrate.
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Fig. 30. Polar display of phase correction to be
added to all transmission coefficient measurements.
Curve is shown swept from 2 to 4 GHz,
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In measuring the transmission parameters with the Network Analyzer, great care was taken
to balance out the insertion phase of adapters, OSM connectors, and line extenders, to give meas-
urements on the substrate circuit alone. Figure 30 shows the only remaining phase correction
that must be added to all insertion measurements, that of a Hewlett-Packard 10-cm length of

air line.

B. Bilateral Microstrip Attenuator

A bilateral matched attenuator must be realizable in microstrip form prior to initiating the
final designof the differential attenuator model. It would be desirable to have some simple struc-
ture like a T or N network with as few elements as possible. Unfortunately, no commercial
units are available yet for the microstrip transmission system. Thin-film resistors are avail-
able, but, for this application, they must be made to order with deposited silver-strip contacts

to be useful. Even these elements are not available in dimensions suitable for microstrip work.

1. Range of Attenuation Needed

A survey of Fig. 4 shows the range of |G| needed for the differential attenuator model to be
from 0.27 to 0.92, inclusive. The values of series and shunt resistances required to realize a
simple T network are shown in Fig. 31 as a function of the attenuation factor |G|. Since resistors

of these values are not available in small size, it was decided to make them.

2. Technique of Silver-Sprayed Resistors

An experimental procedure being investigated in the laboratory consists of spraying silver
paint on substrates to achieve the microstrip transmission line. Such a sprayed line is suscep-
tible to variations caused by the thickness of the deposition, and at present is considered lossy.
It was decided to attempt to realize the necessary resistances by spraying a short section of line
and then scraping off a sufficient amount of silver, increasing the resistance to the value desired.

Figure 32 shows an enlarged view of the experimental attenuator. The ground post was a
piece of 25-mil solder pushed into a 25-mil hole and soldered to the substrate (magnesium titan-
ate) ground plane. The choice of resistance values was R1 = 15.5 and R2 = 72ohms. The actual
values scraped were 13 and 72ohms. An ohmmeter was simply connected across the appropriate

terminals and the scraping performed until the proper value was acquired.

3. Experimental Results

Figure 33 shows the scattering parameters of this experimental bilateral attenuator. The
reflection coefficients are less than 0.2 over the entire S-band. It is felt that if the resistors
could be closer together, using shorter sprayed sections, the reflection might be reduced still
further. The transmission parameter shows an attenuation of exactly 6 dB over the lower part
of S-band and an increase of about 1 dB at the top near 4 GHz. Certainly, the presence of the
ground post so near the line plus the layer of silver adds some inductance into the circuit which

could cause such a variation.

C. Differential Attenuator Model

The design of the model may now be undertaken knowing that a meander line giving the de-
sired differential phase is possible, and a bilateral attenuator with reasonable resistance values
is realizable. Inasmuch as the preference in this case is to show a realization based on small
differential phase, the choices of ¢, G magnitude, and the argument of G are to be made with
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Fig. 33. Polar display of complex reflection ond transmissian caefficients of bilateral
attenuotor on dielectric substrate. Graphs are swept from 2 ta 4 GHz.
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this in mind. Actually, the choice of 6 and ¢ fixes the complex value of G required for a

match since

G(I) = fle, 8) . (122)

1. Proper Phase Lengths

Figure 28 showed the amount of differential phase possible with the meander line operating
near 3 GHz to be approximately 10°. Thus, the frequency of operation was chosen as 3.25GHz
where the differential phase shift is exactly 10°. The selection of frequency allowed all phase
lengths to be determined.

The value of the insertion phase ¢ for the differential phase unit was chosen as 45°. This
selection was made in keeping with a reasonably large ratio of 521/812 at 6 = 10°, as may be
seen in Fig. 10. It is also in keeping with a required attenuation " |G|" that would be practical
to make with the scraped-down silver-line technique.

Reference to Fig. 29 shows that the meander line alone at 3.25 GHz presents 754.75 — 573.23
or 181.52° of phase delay; consequently, € must be raised to 45 + 360 = 405°. The total elec-
trical length of lines feeding the meander from the two symmetrical scattering junctions must
be restricted to 405 — 181.52 or 223.48°. Since the single-line phase of 573.23° was obtained
at 3.25 GHz on an exact 2.0-inch length of substrate, a simple ratio suffices to show the length
of the feed line to be

2000 _ 573.23

Y T~ 223.48 {itiz8)
or
Y = 779.7mils . (124)

With the selection of 6 = 10° and € = 45°, the complex G required of the bilateral attenuator
is fixed. Reference to Fig. 5 shows the required insertion phase of the attenuator to be +26.57°.
Thus, the phase delay through the attenuator path must be —333.43°, A simple ratio will again
suffice to show the required total length of the attenuator legs from scattering junction to scat-

tering junction to be

2000 _ 573.23

X 7 333.43 (125)
or
X =1163.3mils . (126)
Figure 34 summarizes the design so far by showing schematically the layout of the final
matched differential attenuator model with all dimensions.

2. Attenuator Resistances

The magnitude of G required for the chosen 6 and € is 0.5. It may be determined from
Fig. 31 that the series resistances of the silver-painted line must each be 16.7 ohms, and the
shunt resistance to the ground pin must be 66.7 ohms to provide the proper bilateral loss.

3. Construction Details

Following is a brief description of just how the integrated microwave circuit was formed

on the ferrite substrate.




|

550
5895
le—300
-——5975—-‘
= =
: —~{}+—200
550 ! 2871
4
| : |
< ] =4
i !
:
A
|
INOIUM ! ]
STRAPS ' : 7666
i '
\ SILVER i
! PAINT i
)
R aat
: |-—3125—+—3750 .
— V/ // 771 L-{ i
900
625-MIL HOLE

Fig. 34. Layout of differential attenuator model as cut from a Rubylith;
all dimensions are in mils magnified by 25.

- —— ?250-316

Fig. 35. Photo-etch positivemaster Fig. 36. Microstrip differential attenvator shown
of differential attenuator model; ac- with microstrip latching yoke.
tual size.

56




The layout of Fig. 34 was cut from a Rubylith with a 25-to-1 magnification of dimensions in
order to make such a hand-cutting process tractable. The diagram was then photoreduced to a
glass plate, which served as the final contact negative. A contact print of this plate is shown
in Fig. 35.

A 2-inch hexagonal substrate of gadolinium and aluminum-doped YIG 40 mils thick was pre-
pared for photo-etching. First, a layer a few angstroms thick of chromium and then gold was
evaporated on the two flat surfaces, the chromium to form a good bond between the ferrite and
gold. Each surface was then plated with gold to a 0.3-mil thickness which is several skin depths
at S-band. A photo resist was then spun on one of the gold surfaces and baked ready for exposure.
After the contact negative exposure (two minutes) and development, the excess gold was chemi-
cally etched away and then the chromium, leaving the desired circuit with a gold ground plane
beneath.

A 25-mil hole was drilled through the brittle ferrite and filled with silver epoxy, thus form-
ing a conducting post to the ground plane. Finally, after masking off the rest of the circuit, a
layer of silver paint was sprayed over the area of the attenuator resistors.

It was necessary to use indium straps on the sides rather than print the entire circuit, due
to the fact that there might be reason to test each branch of the circuit separately. Also, it was
necessary to open the circuit at some point so that conductivity through the attenuator section
alone existed for the scraping of resistors.

The finished product may be seen in the photograph of Fig. 36, where also shown is the latch-
ing yoke which was actually placed beneath the substrate when operating in order not to interfere

with either the meander line or the silver resistors.

4. Measured Scattering Parameters

A microscopic examination of the final circuit shows all dimensions to be approximately
1.5-percent low. This uniform change in dimension is undoubtedly due to undercutting in the
etching process. Such small changes probably affect only the phase lengths of the various cir-
cuit arms and probably would not seriously affect the overall scattering parameters. Measure-

ment with the microscope also revealed the thickness of the gold-deposited lines to be 0.354 mil.

Meander-Line Branch:— Inaccuracies in the final dimensions of the meander line

are attributed to the cutting of the Rubylith. The several meander leg widths vary from 11.6 to
12.15 mils, with an average of 11.83 mils. Spacing between the legs varies from 7.28 to 7.88 mils,
the average being 7.52mils. The fact that these dimensions are close to the desired 12-mil legs
with an 8-mil spacing is due to the 25:1 magnification used in preparing the Rubylith. The first
experimental meander line referred to on p. 54 was obtained from a Rubylith with only a 10:1
magnification.

It was experimentally determined that this second meander line produced 10° of differential
phase at a frequency slightly below 3.2 GHz with the ferrite magnetization latched in its two rem-
anence states. Based on the first meander line, the 10° differential phase shift was predicted
to occur at 3.25 GHz. Such a difference was probably due to the different spacing and the differ-
ent leg widths of the two experimental meander lines which affected the generation of the differ-
ential phase.

Two methods were used to control the differential phase shift at 3.2 GHz. First, a 5-A cur-
rent pulse flowing through the 26-turn coil wound on the ferrite yoke was more than sufficient
to latch the ferrite magnetization in one of its two remanence states, thus producing 10° of
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Fig. 37. Polar display of complex reflection and transmission coefficients of meander-line section
of differential attenuator. Graphs are shown swept from 2 to 4 GHz.
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differential phase. Second, a continuous current flow of limited amperage was employed to pro-
duce smaller amounts of differential phase shift. It was determined that a 0.2-A current, when
switched, could generate 6° of differential phase shift. A 0.26-A current was required to pro-
duce 8° of differential phase.

Since the physical dimensions of this meander line were quite different from those of the
first experimental line described on p. 51, it would be expected that the impedance also would
be subject to change. Actually, the impedance match with this line was not nearly as good. An
attempt was made to improve the match by attaching two stubs, each 20 mils in length, to the
meander-line branch. The match further improved by using 17-mil-wide indium side straps to
connect the meander line to the 21.7-mil feed lines. Approximately 3 mils of the indicated re-
duction in dimension from the 21.7-mil size are needed to correct for the 2.2-mil thickness of
the indium. The remaining decrease in width means the characteristic impedance of the indium
straps is 51 or 52ohms. Thus, the side straps are providing some transforming action between
the mismatched meander line and the 50-ohm feed lines.

Figure 37 shows the complete set of meander-line scattering parameters measured with a
Hewlett- Packard Network Analyzer which offers a very convenient way to measure such scatter-
ing parameters directly and continuously over an octave band of frequencies. This particular
unit measures the phase angle and magnitude ratio of two signals: a test signal and a reference
signal. By converting these test and reference signals to deflection signals, a dynamic polar
display of both phase and amplitude information of a reflection or transmission coefficient is
presented. For reflection measurements, the incident and reflected signals of the device being
tested are, respectively, the reference and test signals. For transmission measurements, the
analyzer splits an input signal, allowing the test signal alone to pass through the device being
tested. Referring to Fig. 37, it should be noted both the reflection coefficients S“ and SZZ are
shown with an expanded scale of 0.2 maximum. It is further noted that the final matching is
fairly good, for the clustered points defining the reflection coefficients S“ or S22 are each equal
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